Real estate, alternative real assets and other diversions

Bond yields and real estate prices – where next? Part one: What do recent rises in interest rates mean for property prices?

The Professor

US 10-year Treasury Bill rates have been at an all-time low, having fallen below 2% for the first time in 2017. UK government bond (10 year) yields have also been lower than they have been at any time and 10 year Treasuries in Australia are trading at all time low yields. Short-term interest rates have also been at all-time lows. We habitually (and for good reason – see below) connect low interest rates and bond yields to low property yields and high prices.

However, recent rises in US treasuries have got us all wondering.  Is this the start of a downturn for property values? Let’s get one thing straight – I don’t know, and or does anyone else. That’s because I do not know where bond yields and interest rates are going from here, But if I did, I would be able to hazard more than a guess.  And if, when you read this, they have already moved, there may still be time to use the information I am going to share to protect yourself.

Real risk free rates, proxied by the yield on government-issued inflation indexed bonds, are also trading at very low or negative rates.  US Treasury Inflation Protected Securities have been issued offering negative yields since 2010 and UK index linked gilts have been priced at negative yields since 2011.  Australian Treasury Indexed Bonds have never offered negative yields, but are now being issued at all-time lows of around 0.5%.

There is much debate over how long such low yields will continue, and the implications for real estate prices.   Real estate capitalisation (cap) rates (the inverse of price-earnings ratios) are low in many markets, albeit not – yet – at all time lows.

How strongly have real estate capitalisation rates been connected or correlated with conventional bond yields, short term interest rates and indexed bond yields?  What will happen to real estate prices if bond yields revert back to more ‘normal’ levels over the next few years? And what will happen to prices if they do not?

In order to gain an insight into these questions, we need to go back to re-explore the theory supporting the determination if the yield on bonds.   A good starting point is the work of Irving Fisher in the 1920s.

The Fisher equation

The Fisher equation (Fisher, 1930) considers the components of total return delivered by an investment.  It states that:

R = l + i + RP (1)


R is the total required return
l is a reward for liquidity preference (deferred consumption)
i is expected inflation
RP is the risk premium

Index-linked government bonds are widely considered to be risk free and, because the coupon is enhanced by the inflation rate in the previous period, investors do not need to earn an inflation reward in that coupon or running yield. Hence ‘l‘ is given by the coupon on index-linked government bonds (for the purpose of building an example, let us assume 0.5%).  ‘l + i‘ is the required return on conventional government bonds (for simplicity, ignoring an inflation risk premium, let us assume 2.5%). These may be regarded, respectively, as the real and the nominal risk free rates (RFR and RFN). If we assume that there is no inflation risk premium in the pricing of the bond RFN= RFR + i, and RFN RFR = i, so i appears to be 2.5% – 0.5% = 2%.

However, for an investor interested in real returns (say a defined benefit pension fund) conventional gilts are less attractive than index linked gilts. There is a risk of inflation expectations not being realised, so that higher than expected inflation will lead to lower than expected returns; and second, there is a general discounting of investments where they are risky. In a market dominated by investors with real liabilities, risky (in real terms) conventional gilts would be discounted, meaning the required return would be higher. If required returns equal the available return in an efficient market, then the 2.5% available on the conventional gilt must include a risk premium. Following Fisher again, the full explanation of a required return is

R = l + i + RP (1)

If an inflation risk premium of 0.5% in the pricing of the conventional gilt is assumed, the rate of expected inflation implied by a comparison of index-linked and conventional bond yields is 1.5%.

For assets other than government bonds, further factors contribute to the risk premium. For example, investors in corporate bonds might require a higher premium to reflect the greater risk of default associated with such bonds. Meanwhile, cash flows and prospective sale prices from equity and real estate investments are subject to volatility, which will push the required risk premium even higher.

For illustration, we will assume that an additional risk premium for prime real estate of 3.5% is required. (Note that this includes the inflation risk premium of 0.5% in the pricing of the conventional gilt). The Fisher equation can then be re-written as:

The Professor

About Andrew Baum

Andrew Baum

Andrew Baum is Visiting Professor of Management Practice at the Saïd Business School, University of Oxford. He is also Chairman of Property Funds Research and Chairman of Newcore Capital Management. He holds BSc, MPhil and PhD degrees from the University of Reading, and is a graduate of the London Business School investment management programme, a chartered surveyor and a qualified member of the CFA institute (ASIP). He was elected a Fellow of the Urban Land Institute in 2002. He was Professor of Land Management at the University of Reading from 1989 to 2013, Honorary Professor of Real Estate Investment at the University of Cambridge 2009-14 and Fellow of St John's College, Cambridge 2011-4. He was awarded the title of Emeritus Professor by Reading in 2013.

Articles by Andrew Baum

Our Partners